
HD-A11 731 A MECHANICAL PROOF OF THE UNSOLVBILITY OF THE HALTING i/i
PROBLEM(U) TEXAS UNIV AT AUSTIN INST FOR COMPUTING

U LSCIENCE AND COMPUTER A- R S BOYER ET AL- JUL 82

UNCLASSIFIED ICSCA-CMP-28 N@8@14-8i-K< 0634 F/G 9/2 N

MMLmhhmmhiuEIIUhEEIIhEEEElIIhEfUlfllf N

"..:

L'&

-.. !

11111L - 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-]963-A

I.

%VVie * - -. . ~ - . 4 . 4 * . .

., -. -., . . - .

% nI UAI I V LI AZ ILA I its$$ U PI t61 0 .Ak Lt IWsI.# J irl, U.I)

REPORT DOCUMENTATION PAGE REAOID NSTRUCINo1.. II"FOI0I.: COMPL.ETING F014M

1. REPORT NUMBER 12. POVT ACCIESSI 0rNO. 3. RECIPIENT'S CATALOG NUMBERICSCA-CMP-28_
4. TITLSE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A Mechanical Proof of the Unsolvability of the Technical
Halting Problem e. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 0. CONTRACT OR GRANT NUMBER(a)

Robert S. Boyer and J Strother Moore MCS-8202943

N00014-81-K-0634

9j~jfjt1V~p~~tjQUOe AMEAI Ss10. PRGAM ELEMENT. PROJECT, TASK(A I ng c e M AARAREA & WORK UNIT NUMBERS
Applications / Universit Austin

* I... Main Building 210-0 NR 049-500
Austin. Texas 78712

It. CONTROLLING OFFICE NAME AND AD ESS Office of 12. REPORT DATE
_ oftware Systems Science Naval Research July 1982

i ational Science Foundation 800 N. Quincy Street IS. NUMBER OF PAGES

.ashington, D.C. 20550 Arlington, VA 22217 26 Pages
14. MONITORING AGENCY NAME A AODRESS(Il differmt Irom Co.troling Office) IS. SECURITY CLASS. (of this report)

r,_4 Unclassified

qt IS. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of uhis Report)

Reproduction in whole or in part is permitted for any purposes of
the United States government. AP'PROVED v"Of F2"',: "" "I'"

DI! S3 1 BUT1ON U, L 1.14 ITED

17. DISTRIBUTION STATEMENT (ot the abstract enerdn Block 20, it dif.,.rnt fr ., Report) dELECTE)
' .. .'" ikAUG 2 4 18

II. SUPPLEMENTARY NOTES

%I

19. KEY WORDS (Continue on revere' aide if neceeery and Identify by block numbor)

automatic theorem-proving, interpreters, LISP, program verification,
recursive unsolvability, termination

Q.. 20. ABSTRACThConlnuo an roevers# sid It necessary aid Identify by block number)

* C.. -1W describe a proof by a computer program of the unsolvability of the halting
problem. The halting problem is posed in a constructive, formal language.

Ii LJJ The computational paradigm formalized is Pure LISP, not Turing machines.
_ --We believe this is the first instance of a machine proving that a given
W.. problem is not solvable by machine.

t

FORM '

" DD JA, A. 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102.LF-0I4.6601

SECURITY CLASSIFICATION OF THIS PAGE (When Dal Entered)

83 08 11 088

,_ . , . .. 77.I . . 1. ". " . *- * '

4

4i

Technical Report No. ICSCA-CMP-28
Grant No. MCS-8202943
Contract No. N00014-81-K-0634; NR 049-500

A MECHANICAL PROOF OF THE UNSOLVABILITY OF THE HALTING PROBLEM

Robert S. Boyer and J Strother Moore
Institute for Computing Science and Computer Applications
The University of Texas at Austin
Austin, TX 78712

July, 1982

Technical Report

Reproduction in whole or in part is permitted for any purpose of
the United States government.

Prepared for: DTIC
*' National Science Foundation I ELECTE
" Software Systems'Science Program

Washington, D.C. 20550 AUG24 19 0
Office of Naval Research
800 N. Quincy Street B

. Arlington, VA 22217

Table of Contenits

1. Suamary 1
a2. The LISP Interpreter 2

2.1. Formal Description of EVAL 3
*2.2. An English Paraphrase of EVIL 5

2.3. Examples of EVAL 6
3. The HligProblem 7
14. Definitions Of X, va, fa, kc 9
5. The Proof 11
6. Input to the Theorem-Prover 1

6.1. The Definition of EVAL and Its Subroutines 114
6.2. The Definitions of x, va, fa, and kc 17
6.3. Lemma 1 18
6.14. Lemma 2 20
6.5. Lemma 3 20
6.6. A Lemma to Expand EVAL on CIRC 2

-v6.7. The Unsolvability of the Halting Problem 21
7. Chronology 21
A An Informal Sketch of the Formal Theory 22

AcesiFor
IMTS GRA&I
DTIC TAB

Unannourced C
Justifical ion

-. By in

*. au Dis3tributi/

iavail and/or

Dist special

Abstract

We describe a proof by a computer program of the unsolvability of the

halting problem. The halting problem is posed in a constructive, formal

language. The computational paradigm formalized is Pure LISP, not Turing

machines. We believe this is the first instance of a machine proving that a

given problem is not solvable by machine.

* 1. Summary

Our current theorem-proving system, a descendant of systems described in

[1] and [2], has proved that no computer program can decide whether a given

program halts on a given input. To lead the theorem-prover to the proof, we

suggested nine definitions and ten lemmas; our input to the theorem-prover is

presented in section 6. To our knowledge, this is the first mechanical proof

of the recursive unsolvability of any problem.

The model of computation used in our statement of the halting problem,

described in section 2, is Pure LISP, not Turing machines. The unsolvability

theorem is proved in a constructive logic like those of Skolem [5] and

Goodstein (3], a logic that does not provide for bound variables ranging over

infinite domains. The logic is briefly sketched in the appendix.

In section 3 we present a constructive statement of the unsolvability of

the halting problem. Sections 4 and 5 contain an informal version of the

proof.

The proof is an example of program verification via interpretive semantics.

We ask the reader, before he continues, to imagine a machine checkable

proof of the unsolvability of the halting problem complete in every detail.

For example, if the Turing machine approach is adopted, then, among many other

details, one Must contemplate the Godelization of Turing machines necessary to

V, .. ' - - .- . .

rw,

pass one machine as an argument to another.

2. The LISP Interpreter

The programming language used in our statement of the halting problem is a

version of Pure LISP [4]. We present our version by defining the logical

function EVAL, which takes four arguments:

1. an S-expression to be evaluated,

2. a variable alist 1 assigning values to variable symbols,

3. a function alist assigning definitions to nonprimitive function
symbols, and

4. a natural number, indicating the maximum depth of function calls.

EVAL returns either the value of the S-expression in the given environment or

else it returns the object (B5T).

(BTh) is an object in the logic, axiomatized as an element of a "new" type

using the shell principle. (BTh) is recognized by the function BThP, which

returns true or false according to whether its argument is (BTM).

Furthermore, (BTM) is not equal to true, false, or any number, literal atom,

or CONS. Thus (IF (5Th) 1 2) = 1. The reader is cautioned against thinking

that a logical term involving (BTM) is necessarily (BTM).

We describe EVAL in the next three subsections. In the first we present

EVAL formally. In the second (page 5) we paraphrase the formal definition in

English. In the third (page 6) we give some example S-expressions and the

values assigned by EVAL. These subsections may be read in any order.

1An alist is a list of pairs.

-.

.

2.1. Formal Description of EVAL

Formally, EVAL is defined to satisfy the equation below. The formal logic

used is sketched in the appendix. The functions GET, EVLIST, SUBRP,

APPLY.SUBR, and PAIRLIST, used in the equation, are discussed informally below

and defined formally in section 6.

(EVAL X VA FA N)
.%'

(IF (NLISTP X)
(IF (NUMBERP X)

X
(IF (EQUAL X 'T)

T
(IF (EQUAL X IF)

F
(IF (EQUAL X NIL)

NIL
(GET X VA)))))

(IF (EQUAL (CAR X) 'QUOTE)
(CADR X)

(IF (EQUAL (CAR X) 'IF)
(IF (EQUAL (EVAL (CADR X) VA FA N)

(BTM))
(BTM)
(IF (EVAL (CADR X) VA FA N)

(EVAL (CADDR X) VA FA N)
(EVAL (CADDDR X) VA FA N)))

(IF (EQUAL (EVLIST (CDR X) VA FA N)
(BTM))

(BTM)
(IF (SUBRP (CAR X))

(APPLY.SUBR (CAR X)
(EVLIST (CDR X) VA FA N))

(IF (EQUAL (GET (CAR X) FA)
(BTM))

(BTM)
(IF (ZEROP N)

(BTh)
(EVAL (CADR (GET (CAR X) FA))

(PAIRLIST (CAR (GET (CAR X) FA))
(EVLIST (CDR X) VA FA N))

FA
(SUB1 N))))))))).

The function GET takes two arguments. The second is understood to be an

alist. GET looks up its first argument in the alist and returns the

associated value if one is found. Otherwise, GET returns (BTM).

, -,;i-\.* 7 i-Y. :.** :

NoI

I 4

(EVLIST L VA FA N) treats L as a list of S-expressions, x1, ... , xk , and

returns the list of their values

(LIST (EVAL x1 VA FA N) ... (EVAL xk VA FAN)).

However, should any xi evaluate to (BT), EVLIST returns (BT).

Strictly speaking, our logic prohibits the definition of mutually recursive

functions such as EVAL and EVLIST. The actual definitions of EVAL and EVLIST,

which are presented in section 6, are preceded by the definition of a function

EV which has five arguments, the first being used as a flag. Then (EVAL X VA

FA N) is defined to be (EV 'AL X VA FA N) and (EVLIST X VA FA N) is defined to

be (EV 'LIST X VA FA N). The admissibility of EV under the principle of

definition follows from the observation that in each recursion either the last

argument decreases or it stays even and the size of the second argument

decreases.

(SUBRP X) returns true or false according to whether X is a member of

'(ZERO TRUE FALSE ADD1 SUB1 NUMBERP CONS CAR CDR LISTP PACK UNPACK LITATON

EQUAL LIST). These are the primitives, other than 'IF and 'QUOTE, interpreted

by EVAL.

APPLY.SUBR takes two arguments, the name of a primitive and a list of

arguments, and returns the result of "applying" the primitive to the

arguments. For example, (APPLY.SUBR 'CONS L) is (CONS (CAR L) (CADR L)) and

(APPLY.SUBR 'LIST L) is L. For the purposes of the unsolvability proof

obtained here it is necessary that CONS and LIST be among the primitives

recognized by SUBRP and interpreted as above by APPLY.SUBR. Within these

restrictions, arbitrary other names could be recognized by SUBRP and

interpreted by APPLY.SUBR.

Finally, PAIRLIST takes two arguments. It pairs successive elements from

the first witn those from the second until the first list is empty. PAIRLIST

- ,,.S -.. " : , .. ,'. . . : . . " - -' . - . .. -.: .' - -' . .. -' . " . . . - • . .. - . .

returns the list of such pairs. Thus, (PAIRLIST '(A B C) '(1 2 3)) is '((A

1) (B . 2) (C . 3)).

2.2. An English Paraphrase of EVAL

To determine the value of an S-expression, X, under the variable alist VA,

function alist FA, and maximum function call depth N, EVAL uses the following

rules:

If X is not a list,
then
if X is a number, its value is X;
if X is the atom 'T, its value is true;
if X is the atom 'F, its value is false;
if X is the atom 'NIL, its value is 'NIL;
otherwise, X is treated as a variable symbol and

its value is found by looking it up in VA.

Otherwise, X is a list. Let fn be the first element of X
and let xI, ... , xn be the remaining elements, which

we will call the "actual expressions."

If fn is 'QUOTE, the value of X is xI.

If fn is 'IF, the value of X is (BTM) if the value of x,
is (BTM) and otherwise the value of X is either the value of

3 or of x2 , according to whether the value of x, is
false. Thus, our conditional is a 3-place IF that tests against
false instead of an n-place COND that tests against NIL.

Otherwise, evaluate the actuals of X, X1, ... ,x n

under the current VA, FA, and N. If any actual evaluates to
(BTM), the value of X is (BTM).

If fn is a primitive function name, the value of X is obtained
by applying the appropriate primitive function to the evaluated
actuals.

Otherwise, look for a definition of fn on FA.
If no definition is found, the value of X is (BTM).
If a definition is found, it consists of two parts,
a list, called the formals of fn, and an s-expression,
called the body of fn.

If the maximum function call depth, N, is 0 (or not a
natural number), the value of X is (BTM)

- +* 4 4 + . I * • + - * , , + . " . " + ' . " . " . q . ' + q + ' . m ' ' . . + + ' '

6

Otherwise, form a new variable alist by pairing the formals
of fn with the evaluated actuals. The value of X is then
the value of the body of fn under the new variable alist,
the current function alist, FA, and maximum function call
depth N-i.

2.3. Examples of EVAL

We now illustrate the programming language defined by EVAL. We do so by

displaying some simple theorems about EVAL which show the values of various s-

expressions in various environments.

Let v be the following variable alist, in which 'A has the value '(1 2 3)

and 'B has the value '(A B C D):

v. '((A . (1 2 3)) (B . (A B C D))).

Let w be the following, slightly different, variable alist, in which 'A has

the value 0 and 'B has the value '(A B C D):

w. '((A . 0) (B . (A B C D))).

Let f be the following function alist, defining the program APP:

f. '((APP (X Y)
(IF (EQUAL X NIL)

Y
(CONS (CAR X)

(APP (CDR X) Y))))).

Then the following equalities are theorems:

1. (EVAL 5 v f N) : 5.

2. (EVAL 'A v f N) = '(1 2 3).

3. (EVAL '(QUOTE (E . 3)) v f N) = '(E * 3).

4. (EVAL '(IF A T F) v f N) = T.

5. (EVAL '(CONS 7 NIL) v f N) z '(7).

6. (EVAL '(IF X 1 2) v f N) = (BTh).

IL A -.

7. (EVAL '(APP A B) v f N) = (IF (LESSP N 4)
(BTM)
'(1 2 3 A B C D)).

8. (EVAL '(APP A B) w f N) (BTM).

A proof of Theorem 4 depends on the fact that '(1 2 3) is not F and that

the value of the literal atom 'T is T. Theorem 6 may be proved from the

observation that 'X is not given a value by the variable alist v. Theorem 7

informs us that under variable alist v and function alist f, '(APP A B)

evaluates to (BTM) if the maximum function call depth is less than 4, and

evaluates to '(1 2 3 A B C D) for all other depths. On the other hand,

Theorem 8 informs us that under the variable alist w, '(APP A B) evaluates to

(BTM) for all function call depths. A proof of Theorem 8 may be constructed

from the observations that the value of 'A in w is 0, 0 is not NIL, and the

CDR of 0 is O.

3. The Halting Problem

Given an expression X it is not usually meaningful to ask whether it halts.

One must consider whether it halts when evaluated under a particular variable

alist and function alist.

When we say "the evaluation of X under VA and FA halts" we mean that there

exists an n such that (EVAL X VA FA n) is not (BTM). Similarly, to say "the

evaluation of X under VA and FA does not halt" means no such n exists, i.e.,

for all n (EVAL X VA FA n) is (BTM). We have seen that '(APP A B) under the

variable alist

'((A . (1 2 3))
(B . (A B C D)))

halts, while under the variable alist:

'((A . 0)
(B. (A B C D)))

it does not halt.

-

*-I 1 -1' .- *.* . .

To solve the halting problem, we desire a function alist containing a

definition of a program named 'HALTS and its subroutines. 'HALTS must have

the following properties. As input 'HALTS must take three arguments, an

expression, x, and two alists, va and fa. Given a sufficient function call

depth, the evaluation of a call of 'HALTS on such arguments must return either

T or F. If the answer is T then the evaluation of x under va and fa should

halt. If the answer is F then the evaluation of x under va a, 'a should not

halt.

Let us now be more formal. Suppose we have in mind some f)n call

depth N and some function alist FA on which 'HALTS is purporteoly defined.

Observe that

H. (EVAL (LIST 'HALTS
(LIST 'QUOTE x)
(LIST 'QUOTE va)
(LIST 'QUOTE fa))

NIL FA N)

is the value of 'HALTS when applied to some x, va, and fa (with function call

depth N). If H is equal to F we will say that "'HALTS reports that x, va, and

fa does not halt" and if H is equal to T we will say that "'HALTS reports that

x, va, and fa does halt".

We want to prove that for every function alist FA and function call depth

N, there exist x, va, and fa on which 'HALTS reports incorrectly. That is,

- if 'HALTS reports that x, va, and fa does not halt, i.e., H=F, then
there exists a k such that (EVAL x va fa k) 0 (BTM); and

- if 'HALTS reports that x, va, and fa halts, i.e., H=T, then for all
K, (EVAL x va fa K) = (BTM).

Since ours Is a constructive logic we must express this without the

existential quantification over x, va, fa, and k. In particular, we must

exhibit for any FA and N the required x, va, fa, and k. We therefore seek to

express x, va, fa, and k as functions of FA and N. It suffices to define x,

.
. ~~- . -. - --., . -. ,- . -..-. -. *. -,. - . -t .- • :; - .. a a: :: i -- h:i i- . ": : _ i:i . :,

V va, and fa as functions of FA only and k as a function of N only. Given

definitions of x, va, fa, and k, our statement of the unsolvability of the

halting problem is:

HP. (IMPLIES
(EQUAL H (EVAL (LIST 'HALTS

(LIST 'QUOTE (x FA))
(LIST 'QUOTE (va FA))
(LIST 'QUOTE (fa FA)))

NIL FA N))
(AND
(IMPLIES

(EQUAL H F)
(NOT (BTMP (EVAL (x FA) (va FA) (fa FA) (k N)))))

(IMPLIES
(EQUAL H T)
(BTMP (EVAL (x FA) (va FA) (fa FA) K))))).

4. Definitions of x, va, fa, k

The functions x, va, fa, and k must be defined by the user of our theorem-

prover before the unsolvability result can be posed to the theorem-prover.

These definitions are the key to the unsolvability proof.

The intuitive idea behind the definition of x, va, and fa is: x should use

'HALTS to ask, of itself, "Does this program terminate?" and then either

infinitely recur or not, in opposition to the answer supplied by 'HALTS.

Therefore when x is evaluated under va and fa it must reconstruct x, va, and

fa and call 'HALTS on those objects.

Let us attempt to meet these constraints by first considering the following

- list of two definitions:

'((CIRC (A)
(IF (HALTS (QUOTE (CIRC A))

(LIST (CONS (QUOTE A)
A))

A)

(LOOP)
T))

(LOOP NIL (LOOP))).

=i

b.......

10

Let fa be defined to append this list to the front of FA, the function

alist that purportedly solves the halting problem. Let x be defined to return

the expression '(CIRC A), and let va return the singleton alist in which A is

bound to fa (i.e., we pass as the argument to 'CIRC the definition of 'CIRC

and its subroutines). The reader should confirm that if EVAL is applied to (x

FA), (va FA), and (fa FA), the results of evaluating the arguments to 'HALTS

inside 'CIRC are (x FA), (va FA), and (fa FA), as desired.

It remains to define k. If, with function call depth N, 'HALTS reports that

* (x FA) does not halt under (va FA) and (fa FA), we must exhibit a function

call depth k sufficient for (x FA) to halt. Given our previous choices it is

clear that k should be N1.

Some readers could now "prove" HP. But HP is not a theorem, and a careful

S°attempt to prove HP uncovers a technical flaw in our definitions. Consider

what happens when 'HALTS is called inside 'CIRC. After the actuals are

evaluated they are bound to the formals of 'HALTS and the resulting alist is

used as the variable alist in the evaluation of the body of 'HALTS. But the

function alist used is that containing 'CIRC, 'LOOP, and the definition of

'HALTS and its subroutines. How do we know that the evaluation of the body of

'HALTS will not be affected by the presence of our definitions for 'CIRC and

'LOOP? The answer is: we don't. Suppose the definition of 'HALTS on FA uses

a subroutine named 'CIRC defined differently from above. Then our attempt to

define 'CIRC will either overwrite the old definition of 'CIRC (causing 'HALTS

to behave differently) or will be ignored (causing 'CIRC to behave

differently) depending on whether we add our definition of 'CIRC to the front

. or the back of the function alist containing 'HALTS. A similar problem arises

for 'LOOP.

However, here a lemma about EVAL can help us.

Lemma 1. Suppose that FN is a function name that does not occur as a

-*::. **.

11

program name in the expression X and does not occur in the body of any

function defined in a function alist FA. Let FA1 be FA with one additional

definition on it, namely that of the function FN. Then (EVAL X VA FA1 N) is

(EVAL X VA FAN).

Lemma 1 holds even if the result is (BTN). The proof is by induction on X

and N. The actual version of this lemma proved in section 6 is a

generalization concerning the function EV.

Thus, instead of choosing 'CIRC and 'LOOP as the names of our programs we

should choose "new" names, names constructed from the given FA so as to be

guaranteed not to occur in the body of 'HALTS or in any definition in FA.

Since there is no requirement in our programming language that program names

be atoms, it suffices to choose, in place of the name 'CIRC, the object (CONS

FA 0), and, in place of 'LOOP, the object (CONS FA 1). It is straightforward

to show that these names do not occur in FA.

Formal definitions of x, va, fa, and k are given in section 6. Note that 5

of the 10 lemmas in that section were stated to establish that the definitions

of 'CIRC and 'LOOP do not interfere with the evaluation of 'HALT.

5. The Proof

We now prove HP. We use the following abbreviations:

x. (x FA)
va. (va FA)
fa. (fa FA)
k. (k N)
circ. (CONS FA 0)
loop. (CONS FA 1)
body. (CADR (GET 'HALTS FA))
formals. (CAR (GET 'HALTS FA)).

Recall that H is:

...........-.

12

H. (EVAL (LIST 'HALTS (LIST 'QUOTE x)
(LIST 'QUOTE va)
(LIST 'QUOTE fa))

NIL FA N).

Observe that H is equal to:

H'. (EVAL body
(PAIRLIST formals

(LIST x va fa))
FA
(SUB1 N)),

unless N is 0 or 'HALTS is not defined on FA, in which case H is (BTM). Since

we must consider only the two cases H=F and H=T, we conclude N is not 0,

'HALTS is defined on FA, and H is H'.

Case 1. H=F. We must show that (EVAL x va fa k) i (BTM). By expanding

the definition of EVAL and the code for circ

(EVAL x va fa k)
z

(IF (BThP h)
(BTM)
(IF h

(EVAL (LIST loop) va fa N)
(EVAL 'T va fa N))),

where h is:

h. (EVAL body
(PAIRLIST formals

(LIST x va fa))
fa
(SUB1 N)).

By two applications of Lemma 1 (one to remove the circ entry from fa and the

next to remove the loop entry from fa) we get h=H'=H=F. Thus, (EVAL x va fa

k) a (EVAL 'T va fa N) = T i (BTM).

Case 2. HuT. We must show that (EVAL x va fa K) = (BTM). If K is less

than 1, then (EVAL x va fa K) is (BTM). If K is 1 then the call of 'HALTS in

the body of circ returns (BTM) so (EVAL x va fa K) is (BTM). Otherwise:

. - - * I * * -. *
- - - - -. -. .- - . - -. -. J - - -. &.t

13

(EVAL x va fa K)

(IF (BTMP h)
(BTN)
(IF h

(EVAL (LIST loop) va fa (SUBi K))
(EVAL 'T va fa (SUB1 K)))),

where h is:

h. (EVAL body
(PAIRLIST formals

(LIST x va fa))
fa
(SUB1 (SUB1 K))).

By two applications of Lemma 1 we conclude that h=h':

h'. (EVAL body
(PAIRLIST formals

(LIST x va fa))

FA

(SUB1 (SUB1 K)))

Observe that in h' we have function call depth K-2 while in H' we have N-1.

However, the following lemma establishes that h'=H' or else (BTMP h'):

Lemma 2. If both (EVAL X VA FA I) and (EVAL X VA FA J) are non-BTM they

are equal. The proof is by simultaneous induction on X, I, and J.

Thus, hzh'zH'=H=T and hence (EVAL x va fa K) = (EVAL (LIST loop) va fa

(SUB1 K)). However, Lemma 3, below, establishes that the latter EVAL is equal

to (BTM).

Lemma 3. If fn is not a primitive function symbol and the body of fn on FA

is (LIST fn), then (EVAL (LIST fn) VA FA N) is (BTM). The proof is by

induction on N.

Thus, the unsolvability of the halting problem has been proved.

.. . . -

• ° " o° L' Y " ', " " • o° ."
" o "

m - " ." -' .° o k " " - ." -' " • . , . . ,

- 14

6. Input to the Theorem-Prover

We here present and annotate the commands typed to the theorem-prover which

lead to the proof of the unsolvability of the halting problem. The theorem-

prover responds to each theorem below with a proof and to each definition with

a justification under the principle of definition.

The theorem-prover took 75 minutes of cpu time (running block compiled

INTERLISP on a DEC 2060) to produce the proofs. Of this, 7 minutes were spent

in garbage collection and 2 minutes were spent printing out the proofs.

6.1. The Definition of EVAL and Its Subroutines

1. Shell Definition.
Add the shell BTh of no arguments with
recognizer BThP.

2. Definition.
(GET X ALIST)

(IF (NLISTP ALIST)
(BTM)
(IF (EQUAL X (CAAR ALIST))

(CDAR ALIST)
(GET X (CDR ALIST))))

3. Definition.
(PAIRLIST X Y)

(IF (NLISTP X)
NIL
(CONS (CONS (CAR X) (CAR Y))

(PAIRLIST (CDR X) (CDR Y))))

4. Definition.
(SUBRP FN)

(MEMBER FN
'(ZERO TRUE FALSE ADD1 SUB1 NUMBERP CONS CAR
CDR LISTP PACK UNPACK LITATOM EQUAL LIST))

;-. - - -/ .. -..-.- .. .* * .. . -..,.'v .,. . ..

-- - -o.

15

5. Definition.
(APPLY.SUBR FN LST)

(IF (EQUAL FN 'ZERO) (ZERO)
(IF (EQUAL FN 'TRUE) (TRUE)
(IF (EQUAL FN 'FALSE) (FALSE)
(IF (EQUAL FN 'ADD1) (ADDI (CAR LST))
(IF (EQUAL FN 'SUBl) kSUB1 (CAR LST))
(IF (EQUAL FN 'NUHBERP) (NUMBERP (CAR LST))
(IF (EQUAL FN 'CONS) (CONS (CAR LST) (CADR LST))
(IF (EQUAL FN 'LIST) LST
(IF (EQUAL FN 'CAR) (CAAR LST)
(IF (EQUAL FN 'CDR) (CDAR LST)
(IF (EQUAL FN 'LISTP) (LISTP (CAR LST))
(IF (EQUAL FN 'PACK) (PACK (CAR LST))
(IF (EQUAL FM 'UNPACK) (UNPACK (CAR LST))
(IF (EQUAL FN 'LITATOM) (LITATOM (CAR LST))
(IF (EQUAL FN 'EQUAL) (EQUAL (CAR LST) (CADR LST))

V.M

.-

.°

i.:, ,

16

6. Definition.
(EV FLG X VA FA N)

(IF (EQUAL FLG 'AL)
(IF (NLISTP X)

(IF (NUMBERP X) X
(IF (EQUAL X 'T) T
(IF (EQUAL X 'F) F
(IF (EQUAL X NIL) NIL

(GET X VA)))))
, (IF (EQUAL (CAR X) 'QUOTE)

(CADR X)
(IF (EQUAL (CAR X) 'IF)

(IF (BTHP (EV 'AL (CADR X) VA FA N))
(BTh)
(IF (EV 'AL (CADR X) VA FA N)

(EV 'AL (CADDR X) VA FA N)
(EV 'AL (CADDDR X) VA FA N)))

(IF (BThP (EV 'LIST (CDR X) VA FA N))
(BTN)

(IF (SUBRP (CAR X))
(APPLY.SUBR (CAR X)

(EV 'LIST (CDR X) VA FA N))
(IF (BTMP (GET (CAR X) FA))

(BIM)
(IF (ZEROP N)

(BTM)
(EV 'AL

(CADR (GET (CAR X) FA))
. (PAIRLIST (CAR (GET (CAR X) FA))

(EV 'LIST (CDR X) VA FA N))
VA
(SUB1 N)))))))))

(IF (LISTP X)
(IF (BTMP (EV 'AL (CAR X) VA FA N))

(BTM)
(IF (BThP (EV 'LIST (CDR X) VA FA N))

(BTM)
(CONS (EV 'AL (CAR X) VA FA N)

(EV 'LIST (CDR X) VA FA N))))
NIL))

Hint. Consider the lexicographic order induced by
LESSP and LESSP on (LIST N (COUNT X)).

7. Definition.
(EVAL X VA FA N)

(EV 'AL X VA FA N)

-il

eq._ "." . '' :.- ..-. .- .. Z.' .' -''''''
" , " " ' ' - ' - - - ' - k "

' ",:-"-"-" ' -' ' " -' . .

Lvlv

8. Definition.
(EVLIST X VA FA N)

(EV 'LIST X VA FA N)

6.2. The Definitions of x, va, fa, and k

We first define APPEND (so we can concatenate the definitions of 'CIRC and

'LOOP onto FA) and SUBLIS (so we can substitute new names for ICIRC and

'LOOP).

9. Definition.
(APPEND X Y)

(IF (NLISTP X)
Y
(CONS (CAR X) (APPEND (CDR X) Y)))

10. Definition.
(ASSOC VAR ALIST)

(IF (tLISTP ALIST)
2F

(IF (EQUAL VAR (CAAR ALIST))
(CAR ALIST)

S(ASSOC VAR (CDR ALIST))))

11. Definition.
(SUBLIS ALIST X)

2

(IF (NLISTP X)
(IF (ASSOC X ALIST)

(CDR (ASSOC X ALIST))
X)

(CONS (SUBLIS ALIST (CAR X))
(SUBLIS ALIST (CDR X))))

12. Definition.
(x FA)

(SUBLIS (LIST (CONS 'CIRC (CONS FA 0)))
(QUOTE (CIRC A)))

18

13. Definition.
(fa FA)

(APPEND (SUBLIS (LIST (CONS 'CIRC (CONS FA 0))
(CONS 'LOOP (CONS FA 1)))

'((CIRC (A)
(IF (HALTS (QUOTE (CIRC A))

(LIST (CONS (QUOTE A) A))
A)

(LOOP)
T))

(LOOP NIL (LOOP))))
FA)

14. Definition.
(va FA)

(LIST (CONS 'A (fa FA)))

15. Definition.
(k N)

(ADDi N)

6.3. Lemma I

16. Definition.
(OCCUR X Y)

(IF (EQUAL X Y)
T
(IF (NLISTP Y)

-; F
(OR (OCCUR X (CAR Y))

(OCCUR X (CDR Y)))))

17. Definition.
(OCCUR.IN.DEFNS X LST)

(IF (NLISTP LST)
F
(OR (OCCUR X (CADDR (CAR LST)))

(OCCUR.IN.DEFNS X (CDR LST))))

* 18. Theorem. OCCUR.OCCUR.IN.DEFNS:
(IMPLIES (AND (NOT (OCCUR.IN.DEFNS FN FA))

(NOT (BTMP (GET X FA))))
(NOT (OCCUR FN (CADR (GET X FA)))))

19

19. Theorem. LEMMAI:
(IMPLIES (AND (NOT (OCCUR FN X))

(NOT (OCCUR.IN.DEFNS FN FA)))

(EQUAL (EV FLG X VA
(CONS (CONS FN DEF) FA)
N)

(EV FLG X VA FA N)))

We state the straightforward lemmas establishing that our chosen

replacements for 'CIRC and 'LOOP are indeed "new." We then have the system

prove as, Corollary 1, that the evaluation of the body of 'HALTS under fa is

the same as under FA. This is the sole use we make of Lemma 1, but if we do

not have the system prove this Corollary and then forget Lemma 1 it wastes

time trying to use Lemma 1 frequently.

20. Theorem. COUNT.OCCUR:
(IMPLIES (LESSP (COUNT Y) (COUNT NAME))

(NOT (OCCUR NAME Y)))

21. Theorem. COUNT.GET:
(LESSP (COUNT (CADR (GET FN FA)))

(ADD1 (COUNT FA)))

22. Theorem. COUNT.OCCUR.IN.DEFNS:
(IMPLIES (LESSP (COUNT FA) (COUNT NAME))

(NOT (OCCUR.IN.DEFNS NAME FA)))

23. Theorem. COROLLARY1:
(EQUAL (EV 'AL

(CADR (GET 'HALTS FA))
VA
(CONS (CONS (CONS FA 0) DEFO)

(CONS (LIST (CONS FA 1)
NIL
(LIST (CONS FA 1)))

FA))
N)

(EV 'AL
(CADR (GET 'HALTS FA))
VA FA N))

21. Disable LEMMA1.

*. -.. *. - - . - - ,..-

• -. . - ---- --

20

6.4. Lenmma 2

25. Theorem. LEMKA2:
(IMPLIES (AND (NOT (BTMP (EV FLG X VA FA N)))

(NOT (BTHP (EV FLG X VA FA K))))
(EQUAL (EV FLG X VA FA N)

(EV FLG X VA FA K)))

Lemma 2 in its most general form is not useful to the
theorem-prover as a rewrite rule. Consequently, we
state Corollary 2 - the only version of Lemma 2 we will
subsequently need -- and tell the theorem-prover to prove it
by using Lemma 2.

26. Theorem. COROLLARY2:
(IMPLIES (EQUAL (EV FLG X VA FA N) T)

(EV FLG X VA FA K))
Hint: Use LEMMA2.

6.5. Lemma 3

27. Theorem. LEMMA3:
(IMPLIES (AND (LISTP X)

(LISTP (CAR X))
(NLISTP (CDR X))
(LISTP (GET (CAR X) FA))
(EQUAL (CAR (GET (CAR X) FA)) NIL)
(EQUAL (CADR (GET (CAR X) FA)) X))

(BThP (EV 'AL X VA FA N)))

6.6. A Lemma to Expand EVAL on CIRC

We state a lemma that can be regarded as a command to expand the definition

of EVAL when it is applied to '(CIRC A). The system's heuristics for expanding

recursive functions fail to see the merit of converting a question about the

relatively simple expression '(CIRC A) to a question about the more complex

body of 'CIRC.

~.*.

21

.28. Theorem. EXPAND.CIRC:
(IMPLIES

(AND (NOT (BTMP VAL))
(NOT (BTMP (GET (CONS FN 0) FA))))

(EQUAL (EV 'AL
(CONS (CONS FN 0) (QUOTE (A)))
(LIST (CONS 'A VAL))
FA J)

(IF (ZEROP J)
(BTM)
(EV 'AL

(CADR (GET (CONS FN 0) FA))
(PAIRLIST (CAR (GET (CONS FN 0) FA))

(EV 'LIST
(QUOTE (A))
(LIST (CONS 'A VAL))
FA J))

FA
(SUB1 J)))))

6.7. The Unsolvability of the Halting Problem

29. Theorem. UNSOLVABILITY.OF.THE.HALTING.PROBLEM:
(IMPLIES
(EQUAL H (EVAL (LIST tHALTS

(LIST 'QUOTE (x FA))
(LIST 'QUOTE (va FA))
(LIST 'QUOTE (fa FA)))

NIL FA N))
(AND
(IMPLIES

(EQUAL H F)
(NOT (BTMP (EVAL (x FA) (va FA) (fa FA) (k N)))))

(IMPLIES
(EQUAL H T)
(BTMP (EVAL (x FA) (va FA) (fa FA) K))))).

7. Chronology

Our first mechanical proof of the unsolvability of the halting problem was

different from the one described here because we formalized the theorem in

terms of "computation traces" instead of with EVAL. In addition, our approach

to the quantification problem was different: we instructed the theorem-prover

to assume, as an axiom, a formula that claimed that 'HALTS so' es he halting

problem for all programs and then we used the theorem-prover to prove that

~~~~~~~~.. -................... ................,, .•-. , " <, ". .. -- ii



22

T=F. The proof was obtained in March, 1982. It took us four days to guide,

command, and cajole the theorem-prover to this first proof of the

unsolvability result. Users less familiar with the system's heuristics might

still be trying to get the proof through.

In May, 1982 we defined EVAL and stated the problem as seen here. However,

where 'LOOP is called now in the definition of 'CIRC we originally called

'CIRC recursively on A. The proof that this recursion did not terminate was

somewhat more complicated than the proof that 'LOOP does not terminate.

In June, 1982, after presenting the proof at the General Electric sponsored

Whitney Symposium on Computer/Information Science and Technology, we saw the

simplification that would result from introducing 'LOOP. In addition, we

changed the theorem-prover for the first time in connection with this problem

to simplify some of the proofs it was producing.

Our initial attempts to define the trouble-making program 'CIRC were

incorrect. It is easy to intuit the idea of arranging for the evaluation of x

under va and fa to ask whether x under va and fa halts. It is harder to find

a definition that correctly manages to reconstruct its calling environment.

In addition, the unsolvability problem involves several different levels of

QUOTE - a notoriously difficult construct. Several of our initial hand

proofs were erroneous (although all were meant to be formalizations of the

sketch presented here) and the errors were uncovered by our initial attempts

at mechanical proof.

Appendix A. An Informal Sketch of the Formal Theory

We use the prefix syntax of Church to write down terms. For example, we

write (PLUS X Y) where others might write PLUS(X,Y) or X+Y.

Our logic is a quantifier free, first-order logic obtained from the

propositional calculus with equality and function symbols by adding (a) axioms

. . . . . . . . . .



23

for certain basic function symbols, (b) a rule of inference permitting proof

by induction on lexicographic combinations of well-founded relations, (c) a

, principle of definition permitting the introduction of total recursive

-- functions, and d) the "shell principle" permitting the introduction of axioms

specifying "new" types of inductively defined objects.

The basic function symbols are TRUE, FALSE, IF, and EQUAL. The first two

are function symbols of no arguments and return distinct constants which are

abbreviated T and F respectively. IF is a function symbol of three arguments

and is axiomatized so that (IF X Y Z) is Z if X is F and is Y otherwise.

EQUAL is a function symbol of two arguments and is axiomatized so that (EQUAL

X Y') is T if X is Y and is F otherwise.

Using the principle of definition we introduce the functions AND, OR, NOT,

and IMPLIES in terms of IF. For example, (NOT P) = (IF P F T).

Using the shell principle we axiomatize several commonly used inductively

constructed types. Among them are:

1. Natural numbers. A natural number is either the constant (ZERO) or
is constructed from another natural number with the "constructor"
function ADDI. The function NUMBERP "recognizes" natural numbers
in the sense that (NUMBERP X) is axiomatized to be T or F according
to whether X is a natural number. The function SUBI is the
"accessor" for ADDI in the sense that if I is a natural number then
(SUB1 (ADD1 I)) I. SUB1 returns (ZERO) on (ZERO) and on non-
NUMBERP objects.

2. Ordered pairs. An ordered pair is constructed from any two objects
by the constructor function CONS. LISTP recognizes ordered pairs.
CAR and CDR are the accessors for CONS: (CAR (CONS X Y)) = X and
(CDR (CONS X Y)) = Y. CAR and CDR are axiomatized to return (ZERO)
on non-LISTP objects.

3. Literal atoms. A literal atom is constructed from any object by
the constructor PACK. LITATOM recognizes literal atoms. UNPACK is
the accessor for PACK. UNPACK returns (ZERO) on non-LITATOMs.

Each shell class is disjoint from the others. For example, it is an axiom



747 .. . . . . . . -7-7 -7rrj r -7w~- -

24

that if X is a NUHBERP then X is not a LISTP or a LITATOM.

With the introduction of each shell class we obtain a well-founded relation

permitting proof by induction and the definition of recursive functions under

our principle of definition. 
1

We define LESSP recursively so that if I and J are NUMBERPs (LESSP I J) is

T or F according to whether I is strictly less than J.

The function COUNT assigns a numeric size to each object composed of

NUMBERPs, LISTPs, and LITATOMs. The size of a composite object is larger than

the sum of the sizes of its components. For example, (COUNT (CONS X Y)) =

1+(COUNT X)+(COUNT Y).

A precise description of our theory is given by the combination of Chapter

III of [1] and Section 3 of [2].

We now briefly discuss our notational conventions.

0 is an abbreviation of (ZERO); the positive decimal integer n is an

abbreviation of the nest of n ADDI's around a 0.

Nests of CARs and CDRs are abbreviated with function symbols of the form

C...A...D...R, e.g., (CADAR X) is an abbreviation of (CAR (CDR (CAR X))).

We provide a convention for abbreviating some of our LITATO4 constants. If

wrd is a sequence of ASCII characters satisfying the syntactic rules for a

symbol in our logic2 and the ASCII codes for the successive characters in wrd

are cI, ..., cn, then 'wrd is an abbreviation for

2Roughly speaking a symbol is a string of upper or lower case alphanumeric
or sign characters beginning with an alphabetic or sign character other than
+, -, or dot. However, see pg. 133 of (2] for the precise definition.

' .S

*o .. . .



25

(PACK (CONS cI ... (CONS cn 0)...)).

Thus, 'ABC is an abbreviation of (PACK (CONS 65 (CONS 66 (CONS 67 0))). 'NIL

is further abbreviated NIL.

(LIST x, X2... xn ) is an abbreviation for (CONS x, (LIST x2 ... Xn)).

(LIST) is an abbreviation of NIL.

Finally, we provide a convention for abbreviating certain LISTP constants.

For example, (LIST (CONS 'A 2) (CONS 'B 0)) may be abbreviated '((A . 2) (B

0)). We so abbreviate any object constructed entirely by repeated CONSes from

natural numbers and those LITATOs admitting the abbreviation convention noted

above. If x is such an object we abbreviate x by a single quote mark (')

followed by the "pname" of x as defined below. If x is a NUMBERP abbreviated

by n, its pname is n. If x is a LITATOM abbreviated by 'wrd, its pname is wrd.

Otherwise, x is a LISTP. Let x1, x2 , ..., xn be the CARs of x and of its

successive LISTP CDRs. Let fin be the nth CDR of x (i.e., the first non-LISTP

in the CDR chain). If fin is NIL then the pname of x is an open parenthesis

followed by the pname of x1 , a space (or arbitrary amount of white space), the

pname of x2, a space, ... the pname of xn, and a close parenthesis. If fin is

non-NIL then the pname of x is as it would be had fin been NIL except that

immediately before the close parenthesis there should be inserted a space, a

dot, a space, and' the pname of fin.

.



26

REFERENCES

1. R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, New
York, 1979.

2. R.S. Boyer and J S. Moore. Metafunctions: Proving Them Correct and Using
Them Efficiently as New Proof Procedures. In The Correctness Problem in
Computer Science, R.S. Boyer and J S. Moore, Eds., Academic Press, London,
1981.

3. R. Goodstein. Recursive Number Theory. A Development of Recursive
Arithmetic in a Logic Free Equation Calculus. North-Holland Publishing Co.,
Amsterdam, 1957.

4. J. McCarthy, et al.. LISP 1.5 Progranmer's Manual. The MIT Press,
Cambridge, Massachusetts, 1965.

5. T. Skolem. The Foundations of Elementary Arithmetic Established by Means
of the Recursive Mode of Thought, without the Use of Apparent Variables
Ranging over Infinite Domains. In From Frege to Goedel, J. van Heijenoort,
Ed.,Harvard University Press, Cambridge. Massachusetts, 1967.

.q.* .

. . . .. . . . . . . . . . . . . . .



DISTRIBUTION LIST

• Defense Documentation Center (12 copies) Office of Naval Research
Cameron Station Branch Office, Chicago

- Alexandria, VA 22314 536 South Clark Street
Chicago, IL 60605

Naval Research Laboratory (6 copies)
Technical Information Division Office of Naval Research
Code 2627 Western Regional Office
Washington, D.C. 20375 1030 East Green Street

Pasadena, CA 91106
Office of Naval Research (2 copies)
Information Systems Program (437) Dr. A. L. Slafkosky
Arlington, VA 22217 Scientific Advisor

Commandant of the Marine Corps
Office of Naval Research Code RD-i
Code 200 Washington, D.C. 20380
Arlington, VA 22217

Naval Ocean Systems Center
Office of Naval Research Advanced Software Technology Div.
Code 455 Code 5200
Arlington, VA 22217 San Diego, CA 92152

Office of Naval Research Mr. E. H. Gleissner
Code 458 Naval Ship Research
Arlington, VA 22217 & Development Center

Computation and Mathematics Dept.
Office of Naval Research Bethesda, MD 20084
Eastern/Central Regional Office
Bldg 114, Section D Captain Grace M. Hopper (008)
666 Summer Street Naval Data Automation Command
Boston, MA 02210 Washington Navy Yard

Building 166
Washington, D.C. 20374

-.... *- -. . . . . . .



FIME


